当前位置: 首页 » 技术方案 » 产品应用 » 正文

详解毫米波芯片及技术应用优势


时间:2017-05-26 作者:五五
分享到:



国际半导体蓝图协会(InternaTIonal Technology Roadmap for Semiconductors) 预测到2030 CMOS 工艺的特征尺寸将减小到5 nm, 而截止频率ft 将超过700 GHz. 德国IHP 研究所的SiGe 工艺晶体管的截止频率ft 和最大振荡频率fmax都已经分别达到了300 GHz 500 GHz,相应的硅基工艺电路工作频率可扩展到200 GHz 以上。

由于硅工艺在成本和集成度方面的巨大优势, 硅基毫米波亚毫米波集成电路的研究已成为当前的研究热点之一。 美国佛罗里达大学设计了410 GHz CMOS 振荡器,加拿大多伦多大学研制了基于SiGe HBT 工艺的170 GHz 放大器、160 GHz 混频器和基于CMOS 工艺的140 GHz 变频器,美国加州大学圣芭芭拉分校等基于CMOS 工艺研制了150 GHz 放大器等,美国康奈尔大学基于CMOS 工艺研制了480 GHz 倍频器。

在系统集成方面, 加拿大多伦多大学设计了140 GHz CMOS接收机芯片和165 GHz SiGe 的片上收发系统, 美国加州大学柏克莱分校首次将60 GHz 频段硅基模拟收发电路与数字基带处理电路集成在一块CMOS 芯片上,新加坡微电子研究院也实现了包括在片天线的60 GHz CMOS 收发信机芯片,美国加州大学洛杉矶分校报道了0.54 THz 的频率综合器, 德国乌帕塔尔综合大学研制了820 GHz 硅基SiGe 有源成像系统, 加州大学伯克利分校采用SiGe 工艺成功研制了380 GHz 的雷达系统。

日本NICT 等基于CMOS 工艺实现了300 GHz的收发芯片并实现了超过10 Gbps 的传输速率, 但由于没有功率放大和低噪声电路, 其传输距离非常短。 通过采用硅基技术, 包含数字电路在内的所有电路均可集成在单一芯片上, 因此有望大幅度降低毫米波通信系统的成本。

关键词:仪器仪表 测试测量 毫米波 芯片    浏览量:1401

声明:凡本网注明"来源:仪商网"的所有作品,版权均属于仪商网,未经本网授权不得转载、摘编使用。
经本网授权使用,并注明"来源:仪商网"。违反上述声明者,本网将追究其相关法律责任。
本网转载并注明自其它来源的作品,归原版权所有人所有。目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。如有作品的内容、版权以及其它问题的,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
本网转载自其它媒体或授权刊载,如有作品内容、版权以及其它问题的,请联系我们。相关合作、投稿、转载授权等事宜,请联系本网。
QQ:2268148259、3050252122。


让制造业不缺测试测量工程师

最新发布
行业动态
技术方案
国际资讯
仪商专题
按分类浏览
Copyright © 2023- 861718.com All rights reserved 版权所有 ©广州德禄讯信息科技有限公司
本站转载或引用文章涉及版权问题请与我们联系。电话:020-34224268 传真: 020-34113782

粤公网安备 44010502000033号

粤ICP备16022018号-4